All-trans-retinoic acid attenuates neointima formation with acceleration of reendothelialization in balloon-injured rat aorta.

نویسندگان

  • C. W. Lee
  • S. J. Park
  • S. W. Park
  • J. J. Kim
  • M. K. Hong
  • J. K. Song
چکیده

Retinoic acids may inhibit vascular smooth muscle cell proliferation, but may promote endothelial cell proliferation in cell culture. However, little data are available about the effects of all-trans-retinoic acid (ATRA) on endothelial regeneration and functional recovery in an experimental model of vascular injury. Accordingly, we investigated whether ATRA may attenuate neointima formation and accelerate endothelial regeneration with functional recovery in balloon-injured rat aorta. Twelve-week-old male Sprague-Dawley rats underwent endothelial denudation of the thoracic aorta by balloon injury. Fourteen rats were fed a standard rat pellet diet. Another 14 rats were fed ATRA (1.5 mg/day) for 2 weeks. The animals were killed on day 14 for organ chamber study and morphometric analysis. Rats in the ATRA group had a significantly improved acetylcholine-induced relaxation response than those in control group. However, endothelial independent response was not significantly different between the two groups. The extent of reendothelialization was markedly superior in the ATRA group compared with control group (p<0.05). Furthermore, neointima area and the ratio of neointima to medial area were significantly less in ATRA group than in control group (p<0.05). In conclusion, ATRA may accelerate endothelial regeneration with functional recovery, and attenuate neointima formation in balloon-injured rat aorta.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antibody blockade of thrombospondin accelerates reendothelialization and reduces neointima formation in balloon-injured rat carotid artery.

BACKGROUND Remodeling of the extracellular matrix plays an important role during the pathogenesis of atherosclerosis and restenosis. The matrix glycoprotein thrombospondin-1 (TSP1) inhibits endothelial cell proliferation and migration in vitro. In contrast, TSP1 facilitates the growth and migration of cultured vascular smooth muscle cells. Accordingly, we investigated the hypothesis that admini...

متن کامل

Attenuation of neointima formation through the inhibition of DNA repair enzyme PARP-1 in balloon-injured rat carotid artery.

Increased oxidative stress is a major characteristic of restenosis after angioplasty. The oxidative stress is mainly created by oxidants such as reactive oxygen species (ROS), which are assumed to play an important role in neointima formation after angioplasty. DNA is a sensitive target for oxidants; however, oxidative DNA damage remains a poorly examined field in the pathogenesis of restenosis...

متن کامل

α-Lipoic acid prevents neointimal hyperplasia via induction of p38 mitogen-activated protein kinase/Nur77-mediated apoptosis of vascular smooth muscle cells and accelerates postinjury reendothelialization.

OBJECTIVE To explore whether α-lipoic acid (ALA), a naturally occurring antioxidant, inhibits neointimal hyperplasia by inducing apoptosis of vascular smooth muscle cells and to examine its potential effects on reendothelialization and platelet aggregation. METHODS AND RESULTS Restenosis and late stent thrombosis, caused by neointimal hyperplasia and delayed reendothelialization, are signific...

متن کامل

Kallistatin stimulates vascular smooth muscle cell proliferation and migration in vitro and neointima formation in balloon-injured rat artery.

Kallistatin, a serine proteinase inhibitor (serpin), is expressed in the endothelial and smooth muscle cells of blood vessels. The potential function of kallistatin in vascular biology was investigated by studying its role in the proliferation and migration of cultured primary aortic vascular smooth muscle cells (VSMCs) in vitro and in neointima formation in rat artery after balloon angioplasty...

متن کامل

Role of Rho-associated kinase in neointima formation after vascular injury.

BACKGROUND The Rho/Rho-associated kinase (Rho-kinase) system is implicated in various cellular functions, including migration, proliferation, and apoptosis. Because a possible role of the system is suggested in neointima formation after vascular injury, we sought to examine whether a new specific Rho-kinase inhibitor, Y27632, prevents neointima formation of the balloon-injured rat carotid arter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Korean Medical Science

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2000